
ceramics

Article

Influence of Graphene and Graphene Oxide on Properties
of Spark Plasma Sintered Si3N4 Ceramic Matrix

Katalin Balazsi 1, Mónika Furkó 1, Piotr Klimczyk 2 and Csaba Balázsi 1,*
1 Institute for Technical Physics and Materials Science, Centre for Energy Research, Konkoly-Thege N. str.

29−33, 1121 Budapest, Hungary; balazsi.katalin@energia.mta.hu (K.B.); furko.monika@energia.mta.hu (M.F.)
2 Research Network Łukasiewicz, The Institute of Advanced Manufacturing Technology, Wroclawska 37A,

30−011 Krakow, Poland; piotr.klimczyk@ios.krakow.pl
* Correspondence: balazsi.csaba@energia.mta.hu

Received: 6 January 2020; Accepted: 2 February 2020; Published: 5 February 2020
����������
�������

Abstract: The sintering of ceramic matrix composites is usually carried out by raising the sintering
temperature below the melting point of components. Spark plasma sintering (SPS) has the capability
to densify ceramics at a relatively low temperature in a very short time. Two different additions,
multilayered graphene (MLG) and graphene oxide (GrO), were added to Si3N4 ceramic matrix in
various amount; 5 wt% and 30 wt%. The influence of reinforcing phase on final properties of spark
plasma sintered Si3N4 composite was studied. The uniaxial-pressure-assisted SPS sintering resulted
in a preferential alignment of both type of graphene in the Si3N4 ceramic matrix, leading to highly
anisotropic properties with lower mechanical behavior but better tribological and electrical properties.
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1. Introduction

Silicon nitride (Si3N4) has been used over the past decade as an insulating material with extreme
high hardness, strength and toughness in a wide range of temperatures. [1], and is one of the most
promising candidates as structural ceramic, as well. It also has many other advantageous properties
such as good thermal conductivity, tribological and wear properties [1,2]. To improve functional
and mechanical properties of the monolithic ceramics, the addition of reinforcing phase has been
used. Nowadays, different carbon allotrops like single-wall carbon nanotube [3], multi-wall carbon
nanotubes [4], graphene [5,6], reduced graphene oxide powders (rGO) [7] or carbon black [8] are applied
to enhance various properties of ceramics. Generally, graphene is one atomic thick, two-dimensional
layer and usually exists as a film. Nevertheless, the gradually growing interest in graphene production
has led to the creation of various graphene forms that can be used for unique purposes. Graphene
has also many unique and outstanding properties; therefore, it is also a very promising candidate as
nanofiller material in various applications. The intrinsic mechanical properties of graphene make it
one of the strongest materials available [9–11]. Graphene is considered to have excellent electrical
properties [12–14] and high thermal resistance [15–17] as well as a high surface area (highest adsorption
and surface reactions), electron mobility, thermal conductivity and mechanical strength [18]. GrO can
also be used as nanofiller since it has similar properties to graphene and has become more commonly
available recently. The GrO contains heteroatomic irregularity and structural defects compared to the
pure form of graphene. In addition, GO can also be used as a dielectric material for the purpose of
energy storage [19]. Recently, a very interesting point raised by a new ceramic/graphene design is
that graphene is not used as a conventional ‘reinforcement’ but rather to engineer a fine network of
relatively weak interfaces that provide electrical conductivity and fracture resistance [20]. The most
common methods for processing ceramic composites are mechanical alloying, powder processing
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methods followed by different sintering techniques [21]. There are only a few data regarding the
investigation of the effect of graphene and graphene oxide reinforcing to silicon nitride base ceramics
focusing on their tribological, electrical and mechanical performance. One of these works is Llorente et
al. [22]. They prepared spark plasma sintered Si3N4 with large 20 vol % graphene nanoplateles and
exhibited better tribological response than Si3N4 and measured the 50% reduction in the friction [22].
From the point of application view, Si3N4 ceramics can be used as ball components of bearing systems
under lubricated conditions. The sliding contact of self-mated Si3N4–Si3N4 tribopairs under dry
conditions produces a high friction coefficient and high wear rate because the abrasive wear is affected
by the intrinsic brittle nature of ceramics [23,24].

In this work, the multilayered graphene (MLG) prepared by highly efficient attritor milling and
graphene oxide (GrO) synthetized from MLG were used as reinforcing phases. The influence of MLG
and GrO on properties of spark plasma sintered Si3N4 composites was studied.

2. Experimental Part

2.1. Preparation of Multilayered Graphene

Generally, graphene is one atomic, thick, two-dimensional layer and usually exists as a film
(Figure 1a). Nevertheless, the gradually growing interest in graphene production has led to the creation
of various graphene forms that can be used for unique purposes. The synthetic graphite powder
(Sigma Aldrich, <20 m) was used as base material. The graphite was milled in the highly efficient
attritor mill (Union Process, type 01-HD/HDDM) equipped with zirconia discs and grinding media
with diameter 1 mm. The milling was run with rotation speed of 3000 rpm for 10 h in ethanol [25].
This process resulted in a multilayered graphene (Figure 1b).
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Figure 1. Structure of multilayered graphene. (a) Schematic view, (b) TEM image.
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The average thickness of graphene multilayers was 13.76 nm (Figure 1b) according to TEM
investigations. These results imply that the graphene multilayers were composed of approximately
40 graphene layers on average.

2.2. Preparation of Graphene Oxide

The previously prepared MLGs were treated in three steps. Firstly, the powders were dispersed
in cc.HNO3 solution and stirred at 80 ◦C for 4 h. After that, 50% H2O2 was added to the dispersion
under continuous stirring and kept at room temperature for 16 h. The dispersion was then filtered
using filter paper grade 3, the filtrate washed with 30% H2O2 and 96% ethanol and dried at 150 ◦C
in air. In the second step, the dried powders were collected and put in oven (Denkal 4K/1100) and
heat treated at 850 ◦C for thermal oxidation (Figure 2a,b). Finally, a portion of treated powders were
dispersed again in 96% ethanol and sonicated in ultrasonic bath (Elmasonic E60H) for 3 h at 70 ◦C to
examine the effect of ultrasound on the exfoliation rate of graphene oxide multilayers, then the solvent
was evaporated at 80 ◦C [26].
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2.3. Preparation of Composites

A commercial silicon nitride powder (α-Si3N4, UBE Corp.) with 0.6 µm average particle size,
4.8 m2/g specific surface area was used as matrix material. The powder mixture of 90 wt% Si3N4

(Ube, SN-ESP), 4 wt% Al2O3 (Alcoa, A16 average particle size 400 nm) and 6 wt% Y2O3 (H.C. Starck,
grade C, average particle size 700 nm) was milled by the highly efficient attritor mill (Union Process,
type 01-HD/HDDM) using zirconia agitator discs and grinding media with diameter ~1 mm in 750 cm3

zirconia tank. The milling process was performed at the high rotation speed of 3000 min−1 for 5 h in
ethanol. In both cases, reinforcing phase was added in the last 0.5 h of milling process in 5 wt% and
30 wt%. The milled powder mixtures were sintered by spark plasma sintering (SPS, (FCT system,
Germany) in vacuum at 1600 ◦C, 50 MPa-mechanical pressure, 10 min dwelling time, 30 mm diameter
sized discs. The applied heating rate was 100 ◦C/min.

2.4. Characterization Methods

The fracture surfaces of the layers were further studied by scanning electron microscopy (SEM/FIB
Carl Zeiss 1540XB) at 5 kV acceleration voltage with Everhart-Thornley and InLens secondary electron
detectors. A Röntec Si(Li) detector and the Bruker Esprit 1.9 software were applied for EDX elemental
analysis (acceleration voltage 8 kV). Phase analysis was determined based on X-ray diffractograms
recorded at room temperature using a Bruker AXS D8X-ray micro-diffractometer (XRD operating
at 40 kV and 40 mA, Cu Kα radiation, 0.15418 nm), equipped with a focusing Göbel mirror and a
GADDS 2D detector. Diffraction patterns were collected for a 2θ range from 20◦ to 90◦ with 1◦/min
steps using flat plane geometry. The relative number of phases in the composites was calculated using
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the Diffrac.Eva software (Bruker). The structural investigation was performed by transmission electron
microscopy (TEM, Philips CM-20 with accelerating voltage 200 kV). The hardness was tested by Vickers
indentation (hardness testers LECO 700AT) with 19.61 N load for ceramic composites containing
0% and 5% MLG or GrO, while 4.903 N for samples containing 30% MLG or GrO particles and the
indentation fracture toughness was determined based on the Niihara equation [27]. The density of all
sintered composites was measured applying the Archimedes method. Vickers hardness (testers LECO
700AT) with 19.61 N load for ceramic composites containing 0% and 5 wt% reinforcing phase, while
4.903 N for samples containing 30 wt% reinforcing phase. The 3-point bending strength values were
determined by bending tests (tensile/loading machine INSTRON-1112). The Young’s moduli were
determined by Panametric instrument (Epoh III model 2300) using ultrasonic wave transition method.
The friction coefficient was measured by tribometer (DTHT 70010, CSM Instrument, Switzerland) on
pin-on-disk mode by 5 mm diameter Si3N4 balls. The specimens were tested with an applied load of
2 N, at air atmosphere, at room temperature with a relative humidity of 60 ± 15%. The total sliding
distance was 100 m and the sliding velocity was 0.06 m/s. The electrical conductivity of samples was
measured by two-point DC resistance measurements using Voltcraft VC140 type multimeter.

3. Results and Discussion

3.1. Mechanical Properties of Spark Plasma Sintered Si3N4-Based Composites

The determination of the hardness and modulus of elasticity allow useful qualitative conclusions
regarding the mechanical properties of ceramic composite materials. Typically, the introduction of
carbon reinforcing phases into ceramics leads to lower hardness, and its effect on the fracture toughness
is ambiguous, even though there are some toughening mechanisms present in the crack, such as
crack deflection, crack bridging and fibers pullout [28,29]. The hardness of different carbon phase
added Si3N4 ceramic matrix composites showed values between 11 and 19 GPa [4,30,31] depending on
the sintering method and amount of reinforcing phase. A value of about 22 GPa was measured for
spark plasma sintered Si3N4 reference (Figure 3a). As expected, 5 wt% and 30 wt% of MLG and GrO
carbon reinforcing phases had a negative influence on the hardness of the final composites (Figure 3a).
In the case of 5 wt% addition, higher hardness was observed than for 30 wt%. According to these
results, the Si3N4-based composite with 5 wt% MLG content showed two times higher hardness and
modulus of elasticity than the composite with 5 wt% GrO. However, in the case of 30 wt% MLG and
GrO content, composites gave the same values (Figure 3). Furthermore, modulus of elasticity (E) of
ceramics depends on porosity content [32]. This fact is unanimously equal to results of Si3N4-based
composites (Figure 3b), namely, in both types of graphene, the higher amount decreased this value.
However, the MLG addition resulted in higher modulus values than in the GrO case indifferent of
carbon amount in the ceramic matrix (Figure 3b).
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One of the most important parameters of composites is the fracture toughness, which describes
the ability of a material containing a crack to resist fracture. The graphene plays a favorable role by
bridging the cracks healing the crack openings as it is proved by the crack morphology. The fracture
toughness of the composites decreased with the increase of the carbon phase content, and the maximum
value was reached for 5 wt% MLG content (Figure 4a). The decrease in toughness is believed to
be associated with the weak interface connections between the graphene and the matrix. A similar
tendency has been found for the 3-point bendig strength of composites (Figure 4b). Monolitic Si3N4

showed the higher value ~ 517 MPa. The 5 wt% MLG addition resulted in similar strength value.
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P is the applied force and l is the length of cracks.

On the other hand, GrO addition due to different structure had more negative effect on strength
and toughness of composites for both contents (Figure 4b). According to the results above, it could be
seen that the more porous layer with higher graphene content under a tensile stress was, the main
factor for fracture during the three-point bending test.

3.2. Structural Properties of Spark Plasma Sintered Si3N4-Based Composites

The density values were the lowest for the reference Si3N4 ceramic, while the highest values were
obtained in the cases of 5% MLG and GO reinforcing phases (Figure 5). The density values decreased
with increasing carbon phase content, approaching the value of reference ceramic. The lower density
can be explained by the porous microstructure of the samples induced by MLG and GrO particles,
whereas low sintering temperature (1600 ◦C) and short sintering time (10 min) are responsible for lower
density of reference Si3N4 ceramic. In other research work [33], the authors described that the graphene
platelets induced porosity in the matrix and reduced the size of the Si3N4 grains in the resulting
composites. The similar effect was observed for spark plasma sintered composites (Figures 6 and 7).

α -Si3N4 has an equiaxial structure. In contrast, β- Si3N4 is elongated, needle-shaped and less
hard than α- Si3N4. Due to its rod-like shape, the material may have an inhibitory effect on crack
propagation, and thus, the material containing β- Si3N4 has a higher toughness than the material
containing only α- Si3N4. The structural observations of MLG and GrO added composites are shown
in Figures 6 and 7. A very similar structure with Si3N4 grains with average size of 500 nm, and MLG
or GrO dispersed in matrix and embedded into ceramic grains was found. The higher amount of MLG
increased the porosity of sintered composite. The elemental analysis confirmed the homogeneity of
material and high dispersion of graphene addition. The Y and Al map referred the location of sintering
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additives (Al2O3, Y2O3) between ceramic grains. Al shows segregation at some extent in the case of
GrO additions (Figure 7).
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The GrO additions located between ceramic particles hinder the generation and growth of
interparticle contacts (Figure 7). These structural observations confirmed that the carbon reinforcing
phase has been located in porosities between grains of Si3N4 ceramic matrix.Ceramics 2020, 3 FOR PEER REVIEW  8 
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and Y elements.

The higher GrO blocked the growing of Si3N4 grains (Figure 7), increased the porosity and
decreased the density (Figure 5) of sintered composite. The elemental map investigation confirmed
that it has successfully created a homogenous dispersion of the second phase (graphene) in ceramic
composites for 5 and 30 wt% GrO as well.

In the case of reference material, mainly α-Si3N4 phase (JCPDS 01-076-1407) can be observed
with main characteristic peaks at 2Θ = 22.921, 26.514 and 31.820 and a small amount of β-Si3N4

(JCPDS 01-082-0695) (Figure 8) due to short sintering time. The calculated phase ratio of α:β phase of
Si3N4 was 88:5 wt%. In all composites, the distinguishing characteristic peaks for tetragonal zirconia
appear at 2θ = 30.2, 34.5, 50.2 and 60.2 corresponding to the (101), (110), (200) and (211) reflections
(JCPDS 70-1769) which indicated contribution from ZrO2 grinding media resulting from high efficient
attrition milling.

A key factor of a stable processing technology is the preventing of degradation of graphene during
sintering process. In all composites, the presence of α -Si3N4 as main phase, β -Si3N4 minor phase and
carbon phase after sintering is proved (Figure 8, carbon peak (002), (JCPDS 89–7213)). Sintering oxide
additives are in amorphous phase in grain boundaries, and they are not shown in XRD diagram.
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The carbon phase content caused considerable decrease of the friction coefficient (Figure 9), which
was around 0.8 for reference Si3N4. In the cases of both MLG and GrO added composites, these
values have been reduced by more than half. The friction coefficient (COF) for 5 wt% MLG and
GrO containing composites changed between 0.35 and 0.4, while for composites with 30 wt% MLG
and GrO content had almost similar COF values of 0.2. These low values are related to the carbon
containing tribofilms, the porous structure and characteristic of Si3N4 ceramic matrix [29]. Llorente
et al. prepared Si3N4/graphene nanoplateles (GNPs) composites, with up to 20.6 vol% of graphene
fillers that exhibited better tribological response than Si3N4 base ceramic [22]. They observed a 50%
reduction in the friction that continuously decreased with the GNPs content and improved the wear
resistance by up to 63%. The survival of a self-lubricant carbon-rich tribolayer formed on the worn
surfaces controlled the tribological properties of the materials.
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Electrical conductivity of materials is a critical property in electronic applications. Generally, one
intends to expect that Si3N4 ceramic materials behave as electrical insulators.

The electrical measurements proved the significant increase of conductivity with increasing
MLG and GrO content (Table 1). The highest conductivity was measured in the case of 30 wt%
MLG content. In the case of 30 wt% GrO, three times lower conductivity was observed. As the
morphological and mechanical tests revealed, the MLG and GrO content caused high porosity; hence,
they worsen the mechanical properties of composites. On the other hand, the carbon content makes
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the otherwise insulator ceramic a conductor and can improve the electrical and thermal conductivity
of composites [34,35], thereby they are very useful in various electronic applications.

Table 1. Electrical conductivity of Si3N4-based composites.

Type of Graphene Graphene Addition (wt%) Specific Conductivity (S/m)

- 0 9.69 × 10−6

MLG
5 8.25 × 10−3

30 8.35

GrO
5 0.46

30 3.07

4. Conclusions

The sintering of ceramic matrix composites is usually carried out by raising the sintering
temperature below the melting point of components. Spark plasma sintering (SPS) has the capability
to densify ceramics at a relatively low temperature in a very short time. Two different additions,
multilayered graphene (MLG) and graphene oxide (GrO), were added to Si3N4 ceramic matrix in
various amounts, 5 wt% and 30 wt%. The influence of reinforcing phase on final properties of spark
plasma sintered Si3N4 composite was studied. The MLG addition resulted in higher hardness, modulus
and bending strength compared to similar GrO additions. The Si3N4/graphene composites exhibited
lower friction coefficient than for reference. The four-time decrease was observed for 30 wt% graphene
content, independent of graphene type (MLG, GrO). The 5 wt% amount of graphene was sufficient for
the percolation effect to take place. In this way, an increase in electrical conductivity could be achieved.
In conclusion, uniaxial-pressure-assisted sintering such as SPS applied on MLG and GrO added Si3N4

resulted in lower mechanical behavior but better tribological and electrical properties.
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